A consistent characteristic function-based test for conditional independence

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Permutation-Based Kernel Conditional Independence Test

Determining conditional independence (CI) relationships between random variables is a challenging but important task for problems such as Bayesian network learning and causal discovery. We propose a new kernel CI test that uses a single, learned permutation to convert the CI test problem into an easier two-sample test problem. The learned permutation leaves the joint distribution unchanged if a...

متن کامل

Self-Discrepancy Conditional Independence Test

Tests of conditional independence (CI) of random variables play an important role in machine learning and causal inference. Of particular interest are kernel-based CI tests which allow us to test for independence among random variables with complex distribution functions. The efficacy of a CI test is measured in terms of its power and its calibratedness. We show that the Kernel CI Permutation T...

متن کامل

A New Goodness-of-Fit Test for a Distribution by the Empirical Characteristic Function

Extended Abstract. Suppose n i.i.d. observations, X1, …, Xn, are available from the unknown distribution F(.), goodness-of-fit tests refer to tests such as H0 : F(x) = F0(x) against H1 : F(x) $neq$ F0(x). Some nonparametric tests such as the Kolmogorov--Smirnov test, the Cramer-Von Mises test, the Anderson-Darling test and the Watson test have been suggested by comparing empirical ...

متن کامل

Model-Powered Conditional Independence Test

We consider the problem of non-parametric Conditional Independence testing (CI testing) for continuous random variables. Given i.i.d samples from the joint distribution f(x, y, z) of continuous random vectors X,Y and Z, we determine whether X ⊥ Y |Z. We approach this by converting the conditional independence test into a classification problem. This allows us to harness very powerful classifier...

متن کامل

Towards Conditional Independence Test for Relational Data

Conditional independence (CI) tests play a central role in statistical inference, machine learning, and causal discovery. Most existing CI tests assume that the samples are independently and identically distributed (i.i.d.). However, this assumption often does not hold in the case of relational data. We define Relational Conditional Independence (RCI), a generalization of CI to the relational s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Econometrics

سال: 2007

ISSN: 0304-4076

DOI: 10.1016/j.jeconom.2006.11.006